General Principles and process of Isolation of elements

Metallurgy

1.	The most abundant meta	l on the surface of the earth is
	1. Fe	2. Al
	3. Ca	4. Na
2.	The most abundant elem	ent in the earth's crust (by weight) is
	1. Si	2. Al
	3. O	4. Fe
3.	Which of the following n	netal occurs in native state?
	1. Ca	2. Au
	3. Zn	4. Al
4.	The earthy impurities pr	esent in the mineral are called
	1. Flux	2. Slag
	3. Gangue	4. Refractory material
5.	During smelting, an addi	tional substance is added which combines with
	impurities to from a fusi	ble product. It is known as
	1. Slag	2. Mud
	3. Gangue	4. Flux
6.	In metallurgy, flux is a su	ubstance used to convert
	1. Insoluble impurities to a	a fusible mass

2. Minerals into silicates

	3. Soluble particles into insoluble particles									
	4. Fusible impurities to infusible impurities									
7.	When a metal is to be ext the ore is silica, then	tracted from its ore and the gangue associated with								
	1. An acidic flux is added	c'O,								
	2. A basic flux is added									
	3. Both acidic and basic ar	nd basic fluxes are added								
	4. Neither of them is neede	ed								
8.	Which of the following is	not a basic flux?								
	1. <i>CaCO</i> ₃	2. Lime								
	3. SiO ₂	4. CaO								
9.	An example of halide ore	is								
	1. Galena	2. Bauxite								
	3. Cinnabar	4. Cryolite								
10.	Horn silver is									
_	1. Carbonate mineral	2. Chloride mineral								
	3. Sulphate mineral	4. Phosphate mineral								
11.	Willemite is a									
	1. Sulphide mineral	2. Silicate mineral								

	3. Carbonate miner	ral 4. Oxide mi	neral				
12.	Which of the follo	owing is a basic carb	onate mineral?				
	i) Malachite	ii) Bauxite	iii) Azurite	iv) Celestite			
	1. Both i & iii	2. Both ii & iv	3. Both i & iv	4. Both iii & iv			
13.	Method used for t	the concentration of	tinstone ore is				
	1. Hand picking		2. Froth flotation	CO			
	3. Magnetic separa	tion	4. Leaching	U .			
14.	The sulphide ores	are generally conce	entrated by				
	1. Gravity separation	on	2. Froth location pr	rocess			
	3. Magnetic separa	tion	4. Liquation				
15.	Froth floatation p	process is based on:)				
	1. Wetting properti	es of ore particle	2. Specific gravity	of ore particles			
	3. Magnetic proper	ties of ore particles	4. Electrical proper	rties of ore particles			
16.	In the froth floata	tion process of conc	centration of ores, tl	ne ore particles float			
	because they						
	1. Are light						
	2. Are insoluble						
	3. Have the surface	e which is not wetted	easily				
	4. Have a constant	electrical charge					

17. The oil used in the froth floatation method for the purification of ores is

1. Coconut oil

2. Kerosene oil

3. Mustard oil

4. Pine oil

18. The olive oil in forth floatation process is called

1. Frothing agent

2. Collecting agent

3. Conditioning

4. Lubricating agent

19. The collecting agent in froth floatation process is

- 1. Sodium ethyl xanthate
- 3. Pine oil

3. Lime

4. Water

The magnetic impurity present in cassiterite ore is 20.

1. Silica

2. Wolframite

3. SnO_2

Heating of ore in the absence of air below its melting point is called 21.

- 1. Leaching
- 2. Roasting
- 3. Smelting
- 4. Calcination

The role of calcinations in metallurgical operations is 22.

1. To remove moisture

- 2. To decompose carbonate
- 3. To drive off organic matter
- 4. All the above

23. Which of the following reactions is an example for calcinations process?

1.
$$2Ag + 2HCl + (O) \rightarrow 2AgCl + H_2O$$
 2. $2Zn + O_2 \rightarrow 2ZnO$

$$2. \ 2Zn + O_2 \rightarrow 2ZnC$$

3.
$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$
 4. $MgCO_3 \rightarrow MgO + CO_2$

4.
$$MgCO_3 \rightarrow MgO + CO_2$$

24.	Heating of metal of air is called	pyrites to convert tl	nem into oxides of m	etal in the presence					
	1. Smelting	2. Calcination	3. Liquation	4. Roasting					
25.	Leaching process	is one stage in the r	netallurgy of						
	1. Zinc	2. Iron	3. Aluminium	4. Copper					
26.	The common met	hod of extraction of	f metals from oxide o	ores is					
	1. Reduction with	carbon	2. Reduction	with hydrogen					
	3. Reduction with	aluminium	4. Electrolyt	ic method					
27.	In electro-refining of metal the impure metal is made the anode a strip pure								
	metal, the cathode, during the electrolysis an aqueous solution of a complex								
	metal salt. This method can not be used for refining of								
	1. Silver	2. Copper	3. Aluminium	4. Sodium					
28.	An ore after levig	ation is found to co	ntain basic impuritie	es. The flux which					
	can be used durin	ng smelting is							
	1. SiO ₂	2. CaCO ₃	3. Dil HCl	4. CaO and SiO ₂					
29.	The method for the	he purification of in	npure metals which i	s based upon the					
	phenomenon of electrolysis is called								
,	1. Electro refining	2. Hydrometallurg	y 3. Poling	4. Liquation					
30.	The phenomenon	of removing layers	of basic oxides form	metals before					
	electroplating is o								
	 Galvanising 	2. Anodisin	g 3. Picking	4. Poling					

31. Glauber salt is 1. Heptahydrate 2. Decahydrate 3. Pentahydrate 4. Dehydrate **32.** Galena on heating in limited supply of air gives lead metal. This is known as 1. Smelting 4. Sulphatizing roasting 2. Calcination 3. Self reduction 33. Column-I Column-II (Metals) (Ores) A) Tin 1) Calamine B) Zinc 2) Cassiterite C) Titanium 3) Cerrussite D) Lead 4) Rutile В A 2 1) 1 2) 2 1 3 3) 1 2 3 4 4) 34. Match the following. List-List-II **Metallurgical process** Main change A) Smelting 1) In the absence of air ore decomposes 2) The ore generally is converted into a soluble B) Roasting compound 3) Electrolysis takes place C) Calcination

- D) Leaching
 4) Oxidation and the product i solid state
 5) Reduction and the product (metal or its sulphate) as liquid

 A
 B
 C
 D

 1) 5
 4
 1
 2
- 2) 2 3 4 1
 3) 3 1 5 2
 4) 5 2 1 3
- 35. Froth flotation process used for the concentration of sulphide ore
 - a) Is based on the difference in wettability of different minerals
 - b) Uses sodium ethyl xanthate, $C_2H_5OCS_2$ Na as collector
 - c) Uses NaCN as depressant in the mixture of ZnS and PbS when ZnS forms soluble complex and PbS forms froth
 - 1. (a), (b) only correct

2. (b), (c) only correct

3. (a), (c) only correct

- 4. (a), (b), (c) are correct
- **36.** Choose the correct code regarding Roasting process.
 - I) It is the process of heating ore in air to obtain the oxide.
 - II) It is an exothermic process.
 - III) It is used for hydrated oxide and oxy salt ore.
 - IV) It is used after the concentration of ore.
 - 1. I, II and III

2. I, II and IV

	2. 3	3. I, III an	d IV	4. I, II,	III and IV			
37.	In V	an arke	method, If	I_2 is introduced	at 1700K over in	npure metal, the		
	proc	duct will	be					
	1. Io	odide of the	he metal	2	2. No reaction take	es place		
	3. In	npurities	react with io	dine 4	dine 4. Metal doesn't react			
38.	Mat	ch the fo	ollowing.			c ₀ ,		
	List	st-I		List-II	List-II			
	Dre	ssing me	thods	Principle involved				
	A) Washing with waterB) Forth floatation			1) Fusibility difference				
				2) Density difference				
	C) I	Hand pick	xing	3) Wetting difference				
	D) I	Liquation		4) Colour, size etc. of ore particulars difference				
				5) Magnetic property difference				
		A	В	C	D			
	1)	3		4	2			
	2)	5	6	1	3			
	3)	2	* 3	4	1			
	4)	3	2	5	4			
39.	The	The chemical formula of feldspar is						
	1. <i>K</i>	$AlSi_3O_8$	2. <i>Na</i>	a_3AlF_6				
	3. N	$VaAlO_2$	4. K ₂	$SO_4.Al_2(SO_4)_3.4$	$Al(OH)_3$			

40. Match the following.

List-I

List-II

- A) Feldspar
- I) $\left[Ag_3SbS_3\right]$
- B) Asbestos
- II) $Al_2O_3.H_2O$
- C) Pyrargyrite
- III) $MgSO_4.H_2O$
- D) Diaspore
- IV) $KAlSi_3O_8$
- V) $CaMg_3(SiO_3)_4$

The correct answer is

A

IV

IV

- В
- \mathbf{C}
- D

- 1) IV
- V
- II

2)

3)

- Ι
- Ш
- II

I

- 4) II
- V
- Ţ

41. Which of the following factors is of no significance for roasting sulphide ores to the oxides and not directly?

- 1. Metal sulphides are thermodynamically more stable than CS_2 .
- 2. CO_2 is thermodynamically more stable than CS_2
- 3. Metal sulphides are less stable than the corresponding oxides.
- 4. CO_2 is more volatile than CS_2

42. Assertion: Ores are generally converted into oxides, prior to reduction.

Reason: Metal oxides can be easily reduced.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.

43. Assertion: In froth floatation process sodium ethyl xanthate is used as collector.

Reason: Sulphide ores are water soluble.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.
- 44. Assertion: Lead, tin and bismuth are purified by liquation method.

Reason: Lead, tin and bismuth have low m.p. as compared to impurities.

1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.

- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.
- 45. Assertion: All the ores are mineral.

Reason: Ores contains metals combined state.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.

Key

1) 2	2) 3	3) 2	4) 3	5) 4	6) 1	7) 2	8) 3	9) 4	10) 2
11) 2	12) 1 *	13) 3	14) 2	15) 1	16) 3	17) 4	18) 1	19) 1	20) 2
21) 4	22) 4	23) 4	24) 4	25) 3	26) 1	27) 2	28) 1	29) 1	30) 3
31) 2	32) 3	33) 2	34) 1	35) 4	36) 2	37) 2	38) 3	39) 1	40) 2
41) 3	42) 3	43) 3	44) 1	45) 3					

Solutions

- 1. Al-7.28% by weight.
- 2. O > Si > Al > Fe
- 3. Au, Pt, Pd are occur is native state.
- 6. Flux is added to convert insoluble impurities to a fusible mass.
- 9. Cryolite is $Na_3AlF_6(or)3NaF:AlF_3$
- 13. Tinstone is SnO_2
- 18. Olive oil in the froth floatation process act as Frothing agent.
- 23. $MgCO_3 \xrightarrow{\Delta} MgO + CO_2$
- 26. Reduction with carbon.

$$MgO + C \rightarrow Mg + CO$$

- 31. Glauber salt $Na_2SO_410H_2O$
- 33. Calamine $-ZnCO_3$

Rutile -

39. Feld
$$SpO_4$$
 - $KAlSi_3Og$

1.	Bauxite is boiled with aqueous NaOH solution. Sodium metal aluminate solution is formed. This part in the metallurgy aluminium is called									
	1. Liquation	2. Amalgamation	3. Leaching	4. Calcination						
2.	When Baxuite i	s heated with NaOH s	olution, the wate	er soluble compound						
		2. Na_3AlO_3	3. <i>Al</i> (<i>OH</i>) ₃	4. Al ₂ O ₃						
3.	A mixture of W	hite Bauxite powder a	and coke is heate	d in nitrogen gas very						
	strongly. The p	roducts are	(50)							
	1. Al_2O_3, C_2N_2		$2. Al(NO_3)_3, C$	0						
	3. AlN, CO, Si v	vapour	4. $Al_2(CO_3)_3$, N	I_2O						
4.	Aluminium is o	btained by the electro	lysis of pure Al_2	O_3 dissolved in						
	1. Alumina	2. Bauxite	3. Cryolite	4. Feldspar						
5.	In the electroly	sis of alumina cryolite	is added to							
	1. Lower the me	lting point of alumina	2. Increase the	electrical conductivity						
	3. Minimise the	anode effect	4. Remove imp	urities from alumina						
6.	In the extractio	n of aluminium the elo	ectrolyte is							
	1. Fused cryolite	e with felspar								
	2. Fused cryolite	e with fluorspar								

	3. Pure alumina in molten cryolite with fluorspar									
	4. Pure alumina wi	th bauxite and molter	cryolite							
7.	Metal extracted fr	rom sea water is								
	1. Be	2. Mg	2. Ba	4. Ca						
8.	The formula of D	olomite is								
	1. $MgCO_3.CaCl_2$	2. $MgCO_3.CaCO_3$	3. $MgCO_3.CaSO_4$	4. $MgCl_2.CaCO_4$						
9.	Composition of ca	arnallite is		<i>U</i> .						
	1. $CaCO_3.MgCO_3$	2. <i>MgCl</i> ₂ . <i>KCl</i> .6 <i>H</i> ₂ <i>O</i>	3. $Al_2O_3.2H_2O$	4. $MgSO_4.7H_2O$						
10.	Hydrated magnes	ium chloride becom	es anhydrous salt w	when is is heated						
	1. With P_4O_{10}	>	2. With anhydrous	$CaCl_2$						
	3. In dry HCl gas	.0	4. With conc. H_2So	O_4						
11.	Anhydrous Magn	esium chloride can l	oe prepared by heat	ting $MgCl_2.2H_2O$						
	1. In a current of d	ry HCl	2. With carbon							
	3. Unit it fuses	O'	4. With lime							
12.	The formula of th	e most abundant sal	t of sodium in natu	re is						
	1. Potassium	2. Sodium	3. Calcium	4. Lithium						
13.	Tincal contains m	ainly								
	1. NaNO ₃	2. $Na_2B_4O_7.10H_2O$	3. <i>Na</i> ₂ <i>CO</i> ₃	$4. Na_2SO_4$						
14.	In Down's proces	s a small amount of	KCl is added to Na	Cl						

- 1. To decrease melting point of NaCl
- 2. To increase electrical Conductivity
- 3. To maintain electrical contact
- 4. To prevent oxidation of sodium metal formed

15. Goldsmith thermitt process involves in the following reaction

1.
$$Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3$$

2.
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_3$$

3.
$$MoO_3 + 3H_2 \xrightarrow{IR} Mo + 3H_2O$$

4.
$$2NiO + [H_2 + CO] \xrightarrow{300^{0}C} 2Ni + [H_2O + CO_2]$$

16. In the purification of "Al" by Hoop's process the correct statement is

- 1. Electrolytic cell is iron cell and it it contains three layer mass.
- 2. Under layer is pure Al and Carbon rods in it are cathode and the bottom layer contains impure Al and carbon lining of the cell is anode.
- 3. Electrolyte is the middle layer with fused mixture of flouri of Na, Al Ba.
- 4. All the above.

17. Observe the following statements regarding purification of bauxite

- I) During Hall's process, silica, is removed as Si (vapour).
- II) Bauxite ore contaminated with Fe_2O_3 is purified in Baeyer's process.
- III) During Serpeck's process, AlN is formed.

The correct answer is

- I, II and III are correct
 Only I and III are correct
 Only II and III are correct
- 18. Assertion (A): Anhydrous $MgCl_2$ is prepared by heating $MgCl_2.6H_2O$ is a current of HCl gas.

Reason (R): Presence of HCl gas checks up the hydrolysis of $MgCl_2$ by its water or crystallization.

- 1. Both A and R are true and R is correct explanation of A.
- 2. Both A and R are true and R is not correct explanation of A
- 3. A is true but R is false.
- 4. A is false but R is true.
- 19. In Down's process for the extraction of sodium, the melting point of NaCl is lowered from $803^{\circ}C$ to $600^{\circ}C$
 - a) In order to avoid vaporization of metallic sodium.
 - b) In order to avoid corrosive action of sodium and chlorine on the vessel at the high temperature.
 - c) By mixing sufficient amounts of KCl and KF.
 - 1. Only 'a' is correct 2. 'a' & 'b' are only correct
 - 3. a & c are correct 4. a, b, c are correct
- 20. During the electrolysis of fused NaCl, the reaction at anode is
 - 1. Cl^{-} Ions are oxidised 2. Cl^{-} Ions are reduced
 - 3. Na^{-} Ions are oxidised 4. Na^{+} Ions are reduced

21. Ellingham diagram represents

- 1. Change of ΔG with temperature
- 2. Change of ΔH with temperature
- 3. Change of ΔG with pressure
- 4. Change of $(\Delta G T\Delta S)$ with temperature

22. Select correct statement.

- a) The decomposition of an oxide into oxygen and metal vapour entropy increases.
- b) Decomposition of an oxide is an endothermic change.
- c) To make ΔG^0 negative, temperature should be high enough so that $T\Delta S^0$ $T\Delta S^0 > \Delta H^0$.
- 1. (a), (b) only correct

2. (b), (c) only correct

3. (a), (c) only correct

4. (a), (b), (c) only correct

23. Match the following.

List-II List-II

- A) The Electrolysis of Al_2O_3 is in the presence of potassium chloride
- 1) Sodium chloride +
- B) Refining of Al by Hoopes process with cathode
- 2) Molten sodium chloride of *CaCl*₂, *CaF*₂ or KCl
- C) Electrolysis of molten MgCl₂ in the presence of
- 3) Cast iron

D) In Down's process, the electrolyte

- 4) Carbon
- 5) Cryolite + fluorspar

A

В

 \mathbf{C}

D

1) 2

3

4

1

2) 5

4

1

2

3)

2

1

4

4)

3

2

24. Calomel (Hg_2Cl_2) on reaction with ammonium hydroxide gives

1.
$$Hg - NH_2 - Cl$$

5

2.
$$NH_2 - Hg - Hg - C$$

25. Assertion: Thermite mixture $Fe_2O_3 + Al$ (powder) is used in the welding.

Reason: Al is a good reductant.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.

26. Assertion: Cryolite is used in electrolytic extraction of Al from alumina.

Reason: It dissolves alumina.

1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.

- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.
- 27. Assertion: In the electrolytic reduction of Al_2O_3 , cryolite is used.

Reason: Cryolite is an ore of aluminium.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is incorrect but reason is correct.
- 28. Assertion: Al_2O_3 is converted into Al by reduction with carbon at high temp.

Reason: Carbon has greater affinity for oxygen than aluminium.

- 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
- 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
- 3. If assertion is correct but reason is incorrect.
- 4. If assertion is is incorrect but reason is correct.

29. Assertion: Reduction of ZnO with carbon is done at 1100°C. Reason: ΔG^0 is negative at this temperature thus, process is spontaneous. 1. If both assertion and reason are correct, and reason is the correct explanation of the assertion. 2. If both assertion and reason are correct, but reason is not the correct explanation of the assertion. 3. If assertion is correct but reason is incorrect. 4. If assertion is incorrect but reason is correct. **30.** Which of the following metal can be obtained by the electrolysis of the aqueous solutions of their salts? 4. K 1. Cu 2. Na The mass of carbon anode consumed (giving only carbon dioxide) in the 31. production of 270 kg of aluminium metal from bauxite by the Hall process is 1. 180 kg 2. 270 kg 3. 540 kg 4. 90 kg Railway wagon axles are made by heating iron rods embedded in charcoal **32.** power. This process is known as 1. Tempering 2. Annealing 3. Sherardising 4. Case hardening By annealing, steel 33. 2. Becomes liquid 3. Becomes hard and brittle 4. Is covered with a thin film of Fe_3O_4

34.	Stainless steel does not rust because									
	1. Chromium and nic	ckel combine with ir	on.							
	2. Chromium forms	an oxide layer and p	rotects iron form rust	ting.						
	3. Nickel present in it does not rust.									
	4. Iron forms a hard chemical compound with chromium present in it.									
35.	In the electrolysis o	f alumina, cryolite	and CaF ₂ are added	to						
	1. Increase the emf of	of cell	2. Decrease the emf	of cell						
	3. decrease the melti	ng point	4. Both (b) and (c)							
36.	. The method used to prepare steel is									
	1. Bessemer's conve	rtor method	2. Siemen's Martin	process						
	3. Siemens' electric	are furnace	4. All of the above							
37.	Out of the following	g metals that canno	t be obtained by ele	ctrolysis of the						
	aqueous solution of	their salts are								
	1. Ag	2. Cr	3. Cu	4. Mg						
38.	On the extraction o	f iron, the slag pro	duced is							
	1. CO	2. FeSiO ₃	3. $MgSiO_3$	4. CaSiO ₃						
39.	In electro refining o	of copper some gold	l is deposited at							
	1. Cathode	2. Electrode	3. Cathode mud	4. Anode mud						
40.	Tin stone (SnO_2) is	concentrated by								
	1. Electromagnetic s	eparation	2. Gravity separatio	n						

3. Roasting

4. All of the above

41. Which form of iron is least ductile?

- 1. Hard steel
- 2. Cast iron
- 3. Mild steel
- 4. Wrought steel

Key

1) 3	2) 1	3) 3	4) 2	5) 2	6) 3	7).2	8) 2	9) 2	10) 3
11) 1	12) 2	13) 2	14) 1	15) 1	16) 4	17) 4	18) 1	19) 4	20) 1
21) 1	22) 4	23) 2	24) 1	25) 2	26) 1	27) 2	28) 3	29) 1	30) 1
31) 4	32) 4	33) 1	34) 2	35) 3	36) 4	37) 4	38) 2	39) 4	40) 4
41) 2			*						

Solutions

- 2. $Al_2O_32H_2O + NaOH \rightarrow 2NaAlO_2 + 3H_2O$
- 3. $Al_2O_3 + SiO_2$ is white bauxite.

$$SiO_2 + 2C \rightarrow Si + 2CC$$

$$Al_2O_3 + 3C + N_2 \xrightarrow{2075K} 2AlN + 3CO$$

- 6. In the extraction of aluminium electrolyte is pure alumina with bauxite and cryolite.
- 8. Dolomite is MgCO₃CaCO₃

- 9. Carnallite is $KClMgCl_26H_2O$
- 13. Tincol is $Na_2B_4O_710H_2O$
- 15. In Alumino thermit process the reaction involved is $Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3 + heat$
- 24. $HgCl_2 + 2NH_2OH \rightarrow Hg + Hg(NH_2)Cl + NH_4Cl + 2H_2O$
- 31. Copper metal (Cu) is obtained by the electrolysis of the aqueous solution of their salts.
- 32. In case hardening technique, iron rods embedded in charcoal power are heated repeatedly and thus, this technique is used in making axles of railway wagon.
- 33. Annealing is the process of heating steel to redness followed by slow cooling. It makes steel soft.
- 34. Chromium is more electropositive metal than iron. In stainless, chromium forms an oxide layer and thus, it protects steel from corrosion.
- 35. Cryolite and CaF_2 (fluorspar) are added to alumina in its electrolysis to decrease its melting point and to increase the electrical conductivity.
- 36. All the given methods are used to manufacture steel.
- 37. Magnesium (Mg) cannot be obtained by the electrolysis of their aqueous salt solution because when it is liberated at cathode, at once reacts with H_2O give metal hydroxide and hydrogen.
- 38. In the iron silica is present as impurity so far the removal of silica impurity limestone is used.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

$$CaO + SiO_2 \rightarrow CaSiO_3$$

40. Tin stone (SnO_2) has impurities of wolframite $(FeWO_4.MnWO_4)$, which are removed by electromagnetic separation. Being heavy it is also concentrated by gravity separation it is also concentrated by roasting to remove volatile impurities of S and arsenic sulphide etc.

$$S + O_2 \rightarrow SO_2$$

41. Cast iron or pig contains 2 to 4.5% of carbon. It is the least ductile and least pure form of iron; it is brittle and cannot be welded.